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ABSTRACT

- Three models are examined to study the transmissinn of ocean waves
through an ice-field. In each case the effect of ice thickness, water
depth, and the wavelength and angle of incidence of th: incoming osran wavz
is considered. In Model | the ice is assumed to consist of floating non-
interacting mass elements of varying thickness and the shallcuw-water
approximation is utilized to simplify the equations., A simpie zosine
distribution varying in one direction only is assumed. In Modal 11 - .
mass elements, of constant thickness, interact through a bending stiftness
force so that the ice acts as a thin elastic plate. The mass elements are
connected through a2 surface tension force ia Hodel |1l so that the ice is
simulated by a stretched membrane. In baih Models Il ard i1 the ful]
linearized equations are solved., Because of the complexity of the rvs.ite
ing analysis, calculations of the reflection and transmission ceefficie Ts,
and the pressure under the ice, are made in Mcdel |1 on the basis of tha

shallow water approximation.
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NOMENCLATURE

Unless indicated, equation numbers refer to Part 1l cof the report.

constant defined by Eq. (3.5); constant defined by Eq. (5.22)

i=0,1,2} constants defined by Eq. (5.25)

A, J.(i,j = 1,2) constants defined by Eq. (3.56)

constant in Mathieu's equation, defined by Egs. (2.7)
and (3.2) of Part |

pure imaginary roots of Eq. (2.1)

ian(n = 1,2,3...) real roots of Eq. (2.1)

constant defined by Eq. (2.2)

pure imaginary roots ot Eq. (2.2)

ibn(n =1,2,3...) real roots of Eq. (2.2)

ki

T ==x(b % - K3)2
o
¢ path of integration for the integral in Eq. (3.33)
ce, c! deformed paths of integration
c., G constants defined by Eq, (3.30)
—

c = ygH shallow water wave velocity
ci(i: 1,2,3,4) constants defined by Eq. {3.19)

vii
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ico s ico compiex roots of Eq. (2.2)

a 243
tc ! =% (¢ © + k)2

o]
1
+2 _+(C® 34T
o (c;o + &)
D En® Lir¥p in th lex a-pl k<T1<0
= me———— . s{7ip in the complex @-plane, -
]2('_\;2) D P P »
0, region T > - k in the complex Z-plane
D_ region T < 0 in the complex @-plane
E Young's modulus for ice
TAK (- b *)
F, (@) = o) - —2—9°
o+b !
o
F(x,y) defined by Eq. (1.8} of Part I
G(y) defined by Eq. (2.6) of Part 1
g acceleration due to gravity
g(B) defined after Eq. (3.53)
H depth of water
H(x} solution of Eq. (1.10} obtained from separation
of variables

h constant ice thickness
ho , h mean and fluctuating ice thicknesses in Part |
h{x,y) variable ice thickness in Part |

viii



R-1313

coefficient of incident potential
=G+ C,
wave number for incident waves in deep water

wave number for incident waves in shallow water

functions regulzr and non-zero in D respectively,
defined by Eg. (3.25) and evaluated in Appendix B

wave number for undulations in the ice (Part 1)
wave number for x-component of Tncident waves

roots of the equation Mkn6 + (1—L)kn2 = Koa

piu?h
9

Dipg
coefficient in pressure fluctuation term, Eq. (5.38)

non-dimensional value of the pressure amplitude
water pressure

atmospheric pressure

constant in Mathieu's equation defined by Eq. {2.8)
of Part |
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ccefficient of reflected potential

reflection coefficient

]

Iy? + (z-H)Z]%

Ts/pg

pi/p , specific gravity of ice

coefficient of transmitted potential

transmission coefficient
suriace tension force

time

horizontal space co-ordinates

vertical space co-ordinate

= 0 + iT , complex Fourier transform varizble
constant defined by Eq. (3.10)

(8 - )7

]

(f + kz)%
1 +af30
2

defined by Eq. (2.6)

angie between direction of incident wave and normal to
ice field

angle between direction of transmitted wave and normal
to ice field
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critical angle at which complete reflection occurs

wavelength of incident wave

critical wavelength above which all waves penetrate
the ice

minimum wavelength below which effectively no penetration
occurs (Part |}

Poisson's ratio for ice

time dependent surfzce clevation
density of water

density of ice

real part «f complex variable
imaginary part of complex variable «
time dependent velocity potential

shallow water velocity potential defined by Eq. (1.5)
in Part |; defined by Eq. (1.9} in Part |1, respectively

Fourier transform of ¥(y,z)
half-range Fourier transforms defined by Eqs. (3.14)
and (3.15)

ib_'vy

=9(y.z) - e © cosh b z

wave frequency
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DIVISION OF ST JDY

The study is divided into two distinct parts, Part | consists of
Model 1, the propagation of waves through ice of variable thickness in
shallow water, This part is complete in itself, containing the anzlysis,
some numerical results, and a qualitative discussion of the importance of
the various parameters in predicting wave transmission and reflection.
The main part of this work was carried out by Professor T. V. Davies,’

Visiting Scientist, Davidson Laboratory, September 1965 to July 1966.

Part il contains Models || and 11}, where the ice is assumed to have
a flexural stiffness and a surface tension-type force, respectively. For
Model ||, numerical resuits for transmission and reflection caoefficients,
together With the amplitude of the pressure fluctuation on the bottom

under the ice, are given, together with a discussion of the results,

Each part is complete in itself and may be read separately.



R-1313

INTRODUCTION

This report forms the theoretical part of a combined theoretical

15

and experimental study ” into the effect of water waves on 2n ice-field in

water of finite depth.

Wave transmission and reflection in finite and infinite depths of
water, partially ice-covered, have been the subject of a number of thesret-

]:2:3sh3596 7!8

ical studies in contrast to the scarcity of experimental ones.
The theoretical studies have been dominated by the basic assumption that
the sheet of ice can be represented by a semi-infinite rigid sheet, or by
a sheet composed of non-interacting fioating point masses. So far, theory
reveals that the transmission of propagating undamped waves under the ice

depends upon the assumed surface condition, the ice thickness, the angle

of incidence of the incident waves, the wavelength of such waves, and the

depth of water.

Heingl has assumed the ice to be a continuous rigid sheet without
movement, extended over a semi-infinite region of finite depth; he studied
the water wave~ice interaction under thece conditions. Peters2 assumed
that the ice consisted of broken pieces with no interaction, i.e., neither
stiffness nor elasticity, extending over a semi-infinite region on the
surfe:e of an infinite depth of water; he found that there is a criticai
incidence frejquency wii.:» getermines whether or not there will be a damped
transmitted wave srter the interaction. Keller and Weitzd have analyzed
the same prohlem, bu. with water of finite depth. Shapiro and Simpsonh
have made a numerical study of the above reference which shows that water
waves entering an ice Tield are damped axponentially with increasing ice

5

thickness. Keller and Goldstein” have considered the reflect .n of water
waves from a region covered by floating matter with and without surface
tension; they have solved the wave-ice interaction problem for an arbitrary
incidence angle by utilizing the shallow water theory. Their study revzals
the importance of the incidence angle as well as of the degfee of stiffress

of the floating material, Perhaps the most realistic model for the
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transmission of water waves by large floes Ts given by Stoker6 although
his motivation was different. He was concerned with the effectiveness of
a floating beam having a known flexural stiffness, as a breakwater. The
treatment is restricted to two dimensions in the sense that the incident
waves enter the ice normalily, and the shallow water approximation is
utilized,

Finally, the observations of Robin7’8

on wave propagation through
ice fields are considered to be fundamental in which he demonstrates the
existence of a hicher cut-off wavelength depending on the size of floes,
above which no attenuation of water waves occurs, and a lower cut-off

wavelength below which the incident wave is completely absorbed.

The present study consists of three distinct models. 1In the first
model the ice is assumed to be made up of floating non-interacting elements
of varying mass density distribution. The shallow water approximation is
used and a simple thickness distribution is considered to simplify the
enalysis. A qualitative discussion is made of the Tmportance of the varia-
tion in floe thickness, the angle at which the incident wave approaches
the ice-field, the wavelength of the irncident wave, and the depth of water.
It is shown that transmission of a given incident wave at a given incideﬁ&e
angle is critically dependent upon the parameters of the problem, but that
waves which are long enough will always be transmitted into the ice. In
addition, some computatiens are made which indicate in effect a wavelength
below which no incident waves penetrate the ice. These results confirm the

observations made by Robfn.7

In Model 1l the ice s assumed to bave a constant thickness h , but
is ailowed to bend tc permit the transmission of water waves. This corres-
ponds to Stoker'slﬁodel, but in this case waves may be incident on the ice
from any angle and the proklem is solved for any depth of water H . Be-
cause of the complexity of the analysis, numerical computations are made
only under the assumption of the shallow water thecry. It is shown that
a critical incidence angle exists for each wavelength above which the
incident wave is completely refilected by the ice-field, without transmission

taking place. In addition there exists a critical wavelength akbove which
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all incident waves, at any incident angle, penetrate the ice-field as un-
attenuated transmitted waves of reduced amplitude. Extensive calculations
are made which emphasize the importance of waveiength, incidence angle,
ice thickress and water depth, in determining transmission and reflection
coefficients, and the pressure fluctuztions on the bottom under the ice.
It is felt that this model provides a good representation of the trans-
mission of waves through large ice floes which, according to Robin,7 have

been observed to bend to allow waves to propagate through,

in Model 111l the ice is assumed to be made-up of floating point
masses which are conpected through a surface tension force. This medel
was, in fact, considered before the more complicated Model 1!, and many
of the difficulties which arise in this more realistic case were first

encountered and solved in the simpler boundary-value problem of Model 1},

It is acknowledged that this surface tension model is not a realistic
representation of the wave-ice interacticn problem but it is of scne
academic interest since it extends the work af Keller and Go1dstein5 to
finite depth of water. It is only given brief treatment since it follaws

closely the techniques used n Model I1.
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PART I

MODEL I. WAVE PROPAGATION THROUGH AN ICE-FIELD
OF VARYING THICKNESS

1. INTRODUCTICN AND EQUATIGNS GOVERNING THE PROBLEM

A semi-infinite sheet of ice of variable thickness is at the surface
of an ocean of uniferm depth H ; the sheet occupies the domain 0 <y <™,
- <x<w _ z=H and the remainder of the domain z =H is open water.
O:ean waves sre assumed to impinge normally on the edge of the ice-sheet
and the problem arises of the nature of the transmitted vave. Here we

S

assume from Keller” that the problem can be approached using the approxi-
mations of shallow water theory, that Js, we are assuming that the wavelength
A of the incident ocean waves is long compared with depth H of water.

In the first place, if we approach the problem on the basis of the lin-
earized theory only, the velocity potential €(x,y,z,t) for the liguid

motion satisfies
¢ +¢ +% =0 ,0<z<H (1.1)

and
¢ =0 R z =1 (1.2)

.

At the free surface of the ocean where &{x,y,t} is the elevation above

the undisturbed level, we have, on the basis of iinearized theory,

L1 =32
Bt_haz » gg—at
so that
Qtt+g@z=0 y Z=H, —a<y<yQ (1.3)
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The difference of pressure across the ice-sheet is given by

2%
P-p, =P - gE)

and the equation of motion of an ice element, in the absence of bending

stiffness and surface stress effects, is

P-p, = pih(x.v)itt

where o, is the ice-density and h(x,y} the variable thickness of the

ice. Hence, the condition to be satisfied on the ice-sheet will be

-?ri - 95 =5 h{x,y)E,,
3E 2 (143
St T

where s = p;/p is the specific gravity of ice.

In order to simplify the problem, we now invoke the shallow water

theory approximations and we do so by writing (see Keilers)

§(XDYIz!t) = ‘P(x)Yxt) - %22 (CPXX + ‘PYY) + 0(2)3 ('-5)

This expression will satisfy Eq. (1.1} to the first order and will also
satisfy Eq. (1.2). |In order to satisfy Eq. (1.3), the function o(x,y,t)
must satisfy

<Ptt-gH(<?xx+ch)=D , ~e<y<Q (1.6)

and, after some reduction of Eq. (1.4), we find that ©(x,y,t) must
satisfy

32 @
Pppm 9 BO, P )= s Hh () Gz + 5709, = 0, 0<y <= {1.7)

6
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Equations (1.6) and (1.7) constitute the basic equations of the

problem, the function h(x,y) being the prescribed variable thicknes: of
the ice.
We can take the functicn @ to contain the time through .n exponen-

ticl factor, and If we write

® = F(x,y) exp(-iwt) (1.8)
then we have
i <y< (1.9)
+ —_— = .
F%x FYY+ of F=0 , =<y 0
and
_ 2 °
sWw w
-— + —F = 0 <y <
{1 - Z- e} PR ) *+5pF=0 L 0<y<=  (1.10)

At the boundary y =0, it will be necessary to have ¥ and ¢y contin-

uous, expressing the continuity of normal and transverse velocity, hence

Y

F, Fy continuous at y =10 (1.1

2. ICE THICKNESS VARYING IN y-DIRECTION
WITH NORMALLY INCIDENT WAVES

Here we take the ice thickness h to vary only in the y-direction
and, in order to simulate the effect of ice-floes, it will be assumed to

have the follewing structure:
ho=h, + h, cosky (2.1)

where h, = ho and 2T/k is the wavelength of undulations in the ice.

We look for solutions in which the incident ocean waves impinge
normally against the edge of the ice shest, in which case the complete

expression for ¢ in -« <y <0 can be taken to be
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¢ = exp {iw(z- - t)} (2.2)

where ¢ =-QE§ . The transmitted wave in C <y <® will be of the form
9 = G(y) expi-jwt} (2.3)

and from {(1.10) it follows that G(y) satisfies the differential equation

sh u? sh_u?
o 1 &6 P
{(]— g - g cos ky}d_‘,u?+g_HG v (2.’-!—)

It is not necessary to work with this differential equaticn in the above
exact form since, when we inserl typical value of the constants ho , hy

s , ®, we find that

sh, o* sh o®
< ] O <<
9 S

for waves whose periodic time is greater than L 3econds and we shall
assume that the investigation is restricte. to this class of waves, In

this case it is permissible to expand

shuf shuF 1-1
{(I - —*——-4 - cos ky;

in the form of a convergent infinite series in the parameter shluF/(g-shOUF)

and thus to write (2.4) in the approximate form

sh w*

& W{u R LEL I

(1-
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Accordingly, if we now write

S f -
= HE 7 shouF) (z.7)
Ui
sh, a?
_ 2'})2 q )
= sh u,a)a (2.8)
_ o
(-
Equation {2.5) beccmes
446 -
Eﬁ? + (a+ 2qcos 27)6 =0 (2.9)

9

which is the standard form of the Mathieu differential equation {Mclachlan,
Theory and Application of Hathieu Functions). Periodic soiutions of
Mathieu's eguation e-ist only under special circumstances and in order to
make this clear we refzr to the stability diagram in which g is the

abscissa and a the ord}nate {Fig. 1}.

If the values of g and a are such that the representative point

(9,2) in the stability diagram lies on the curves denoted by

there will be a periodic solution of Eq. (2.9). When gq is sufficiently

small, it is known {see Mclachlan) that the equations of a, b1 -8, ..

are as follows:

1
a = -3 + 7oy o+ o) (2.10)
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by=1-gq ~éqz+g};q3--]—5'—33q‘+ 0(g°) {2.11)
a,=l+gq- é‘qa-g];qa-,—;;gq“ 0(q) {2.12)
b, =4 - %aa +-,-31,r52-y;q“ + 0(q®) (2.13)
s, b+ - Bt o) (2.14)

and the solutions corresponding te a_ b a

1+ @, ... areas fol lows

in the usual notation

(==}

2 : ceo(ﬂ) = ¥ Aég) cos 2nM) (2.15)
o

b,: se (1) = ; Bélll sin(2n+1)7 (2.16)
, o

a: ece m = ;2 Agz_l cos (2n+1)7 (2.17)
o

Elsewhere in the stability diagram the solution for G(T} of Eq. (2.9)
is of the form

e =™ sin0) + M@ g0y, 0 (2.18)
where &(T,u) is a periodic function of T, W(®) is the characteristic
exponent of the Floquet-Poincaré theory, and O s a parameter. We can

illustrate the significance of the parameter ¢ by considering first of

all, the area of the stability diagram lying between a, and b2 .

10
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Whittaker obtained the form of solution in this domain and he finds that

{McLachlan, p. 70) one soiution of ©2.9) is given hy eﬂu(G) #(MN,0} as

follows:

#(z,0)= sin(z-c)+ s sin(3z-0)+ cscos(Sz-a)-f- sssin(SZ_-c)+... {2.19)

and & and @ are expressed in terms of g and ¢ as follows:

. 1 i 1
a(s,q) = I-q cos2g+ E-qa(-i+ 5c0540)+ gn-qacoszd + .. (2.20)
w(.q) = - % q sin2o + 3 P°sin2g + ... (2.21)
{1 wil] be noted that a(0D,q) = By » af- % , q) = a, , where b , a, are

the walues given in (2.}1) and (2.12). Whittaker finds that the value

c;.%n+ie,8real,20 (2.22)

gives the region between a, and b, and here 4 is purely imaginary.

This is therefore designated a stable area in the stability diagram.

In a similer way, the value

o=i8 , 8 real , 290 (2.23)
gives the stable region between a, and bl . The area between b1 and
a, is such that o 1s real and lies iIn the range .

1 ]
-z so=sa0 (2.24)

and this is designated an unstable area in the stability diagram. The

remainder of the stability diagram can be investigated and described in a

1
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similar way,

The solution given in Eq. (2.18) indicates that tke second solution
can be deduced from the above described solution merely by a change in the

sign of o,

Returning now to the wave problem, we see that as long as the
representative point (q,a) lies in any unstable domain (shown shaded in
the stability diagram), the corresponding solution for G(T} must be an
attenuated transmitted wave; the degree of attenuation will depend upon
the magnitude of p(S) and we see that in Eq. (2.21), B will attain its
max imum value in the unstable domain (b, a,) for o=~ E provided q
is sufficiently smal!. On tho other hand, if the representative point
(q,a) lies on a, » b, ,e ,b_, ... orwithin the stable unshaded

2
areas (ao . bl) , (a1 , ba) , ... , the solution for G(TM) will be an

-

undamped transmitted wave, The character of this undamped transmitted
wave will be perfodic (but not a sine wave) when {g,a) actually lies on

the curves a_, b , s ,b ... : the structure when (gq,a) lies in a

stable area szch a; (ao , bf) is not periodic but almost periodic., This
description of regions of damped and undamped solutions can be expressed

in a most useful form by returning to the definitions of & and q in
Egs. {2.7) and (2.8}. It will be noted that each of these parameters
contains the geometrical qﬁantities H, ho . h1 , the specific gravity

s as well as the wavelength 2T/k of the ice undulations and the ocean
wave fraguency parameter g; itwill be observed also that the parameter w ,

when eliminated between {2.7) ard (2.8), Jeads to the relation

g = (-m! q (2.25)

For a fixed value of (8/skahIH) , this relation will be represented by a
paraboia I' . This parabola will intersect the curves b1 v 2, b2 s 2, ..
in points Bl . A1 By Ay, L. as shown in the diagram, and it is a
straight-forward matter to locate these points analytically when q s

not large, It is then possible to determine the values of w at the
positions B, , A , B2 . A2 s .»+ which we can denote by w(Bl) s w(Al) ) --

12
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~PARABOLA T
-~

SKETCH 1

It then follows that the domains of w defined by 0 < w < w(Bz) ,
w(Al) <w< w(Bz) s +.. lead to stable or undamped transmitted waves,

while the ranges

o(3,) <w<w@) , wB) <o<e@), ..

give damped or attenuated transmitted waves. The breadth of these ranges
will depend upon the parameter [Slskath) which is seen therefore to play

a crucial role. If we write

4
r=—;
sk h H
1

{2.26)

the parabola T has the equation a® = 2rq and the intersection of T
with the curve bl , for example, can be obtained by combining (2.26) and
(2.11), namely

a=1-qg+ 0(a) (2.27)
so that the intersection is given by

2rqg = (1 - g)*°

13
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that fis
g=(1+r) -4r(Z+1)

and the value of W then follows using (2.8), The approximate positions

of w(Bl) . w(Al), -.. can also be determined in this way.

To summarize the conclusions oi this section of Part 1, the impor-
tant feature of the results is that when all the geometrical parameters
are fixed, namely, the depth of water, average ice thickness and departure
of ice thickness from the mean, the wavelength of undulaticns in the ice,
there can be certain wavelength ranges for the incident ocean waves which
will be attenuated on the ice-sheet and other wavelength ranges which will

be transmitted as undamped waves.

3. MODIFICATION FO: OBLIQUELY INCIDENT WAVES

The above analysis requires modification whenever the incident wave
impinges upon the ice-field at an angle other than zero. In order to
carry out this modification, we refer to Eqs. {1.9) and (1.10). <Clearly
the solution of Eq. (1.9) representing an incident wave making an angle ©
with the ice-field is

iKycos © + iKx sin §
e © o

where

21
A

°7=
I
2
X

and A is the wavelength of the incident wave.

Assume a solution of Eg. {1.10) of the form H{x) G(y) . Then sub-
stitution inte (1.10) gives

' x) _ g + Kog
%_- —
H Gly 1- sHK_“h{y)

14
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where the thickness of the ice is assumed to vary in the y-direction only.
Since the left-hand side is a function of x only, while the right-hand
side is a function of y only, each side must be equal to a constant.

To obtain an oscillatory x-variation for all x , - ® < x < | jt is
necessary that this constant be negative. Further, in order that the
solutions for y <0 and y > 0 might be continuous at y = 0 for all
X , =2 <x <e® it is necessary for the x-dependence to be the same for
y >0 as for y <0 . Thus

H' (x 2 .=
= - g
H{x Ko sin
and
iKox sin ©
H(x) = e

Thus the equation satisfied by G&(y) is

4°G z 1 — -
G;? + K [1_ sHKozh(y) sin 0] 6{y) =0 (3.1)

Substituting the assumed thickness distribution h(y) = h, + h cos ky
into Eq, (3.1) and making the same approximations as before, namely
shy K?H < <1, sh K3H<<]
© o a
gives

EEE +(a+2q9cos 2 6(M) =0
d1?

where in this case

2
as= = sin o (3.2)
K 1 - shk ? h
O [o]

15
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zxoz sh]KOEH
q = 2 2 <2 [3-3)
[ (1 - shoKo H)

and the substitution ky = 27 has been made. Once again Mathieu's differ-
ential equation is obtained. Here also the frequency dependence may be
eliminated to obtain a relation between a and g , but since, in this
case, the relation is no longer simple, there seems to be no advantage in

doing this,

L. DISCUSSION OF RESULTS

{a) Existence of Energy Cut-Off And 'ts
Dependence on the Various Parameters
The present mathematical modei, based on the shallow-water approxi-
mation, with ice undulations following a cosine distribution, clearly does
not represent an actual ice-field. However, a number of aualitative re-
sults may be deduced which might be expected to hold true for more realistic
distributions of ice floes. Thus it has been shown that for fixed values
of k, h1 ,

incident wave into the ice-field. By undamped transmission is meant a

H , there may or may not be undamped transmission of a given

wave travelling through the ice undiminished in amplitude with distance into
the ice. An attenuated transmitted wave is a wave which decays exponen-
tially and travels only a short distance into the ice. Thus for 8 =0 ,
whenever the parabola given by Eq. (2.25) crosses a shaded region in
Fig. 1, the transmitted wave is attenuated, whereas when the parabola
crosses an unshaded region, the wave will be unattenuated and will proceed

through the ice. Thus the domains of w defined by
0<w®< w(Bl) s w(Al) <w < w(Bz)’ .
denote stable or undamped transmitted waves, while the ranges

w(B,) <u <o), w(8,) <w<w@), ...

16
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denote damped or attenuated waves.

Now for shallow water, the relation between wavelength A and fre-

quency W is given by

A = AN

w

so that corresponding to the domains of @ described above we have the
wave-hands

A>Ai(8) , A(A) > > A(BE),

denot ing wavelengths of incident waves which are transmitted through the

ice as undamped waves, and the wave-bands
AB,) > A > A(A) , MB) > A >A(A), ...

corresponding to zttenuated transmitted waves,

One striking observation which may be made is that there exists a

Zﬂg;H
}L(Bl) = U)(BI

such that all incident waves whose wavelength satisfies A > h(Bl) are

wavelength

transmitted through the ice. When A =A(B,) the first energy cut-off
occurs and complete reflection of the incident wave takes place for all A
satisfying R(Ai) <A <A(B). For A(Bz) <A< A(Al) wave transmission

again oceurs. The distribution and width of the stable and unstable

r

regions are governed by the various parameters in the oroblem, and it is

possible to make the following gencial observations,

3

As h, + 0, corresponding to a uniform constant thickness ho

then q — 0 and Mathieu's equation degenerates into the eguation

&6 _
o + aG(M =0
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whose solution does net of course exhibit stable and unstable regions.

This may also be seen by considering the parabela

a =@ ¢ (8 = 0) (3.4)

For small h,  the parabola becomes steeper and the width of the unstable
regions becomes smaller, there being no unstable regions in the 1imit

h, = 0 (see Sketch 1, p.13 ).

A similar argument can be made for the case of small k , corres-
ponding to long wave undulations in the ice, and small H , corresponding
te very shallow water. In each case the parabola (Eq. [3.4]) is very
steep and the width of the unstable regions are small, vanishing sltogether
in the limit of H, k= 0 . This also follows from a consideration of
the tTimit of the Eq. (2.5) for small H and k .

It appears from Eq. (3.2) that the effect of finite incidence angle
€ is to reduce the value of 2 , while q remains constant, thus moving
points on the stability diagram intc regions of greater instability, For
angles close to 900, where a is close to zero, but still positive,
Sketch 1 indicates that the first stable region 0 <w < w(B;) is wide,
but that subsequent regions are predominantly unstable. Thus the wave-
length A({B;) at which the first energy cut-off occurs is smel}, and

only narrow bands of wavelengths smaller than A(B,) penetrate the ice,

Further information concerning the effect of the various physical
parameters upon wave reflection and transmission was obtained by making

some computations which are described in the following section.

(b) Numerical Results

For the case of normally incident waves (€ = Do), some computations
were made to determine the breadth of the unstable regions corrasponding
to complete reflection of the incident wave. Dimensions corresponding to
model sizes were chosen which were then scaled using scale ratios of BO:1

and 200:1. Thus, ice thicknesses of h0 = h, =0.25, 1.00 and 2.00 inches

18
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were considered, with wavelengths of undulations in the ice (i.e., fioe
length) of 0.50, 1.00, and 3.00 feet. The water depth was taken to be
0.50 feet and the specific gravity of ice s = 0.92 ., Then from Eq. {2.25)
the quantity a was determined for particular values of q . The equa-
tions of the curves a_, b , a ,
tables in Appendix Il of HcLach]an9 for g > 1, together with the series
expansions given by Egs. (2.10) to (2.14) for g <1 (see McLachlan? p. 16-

17). These curves were then drawn and the intersection of the parabola

b2 up to b were computed using the

with each curve a, b1 3 eee bs , tabuiated. The intersection pcints
give values of gq from which the frequency and hence the wavelength of

the incident wave can be determined using Eq. (2.8). These points which
span shaded regions (Fig. 1} denoting unstable solutions of Mathieu's
equation, determine bands of wavelengths corresponding to incident waves
which are completely reflected by the ice-field. The results are given

in Table . All wavelengths which lie outside the ranges indicated in

the table correspond to incident waves which are transmitted through the

ice as undamped waves. The largest wavelength given in each case is A{B ) ,
and all waves having a wavelength A > A(Bl) propagate into the ice as
undamped waves.

From Fig. 1, as g and hence, ¥ , increases indefinitely, the width
of the stable regions intersecting the parabola {2.25) diminishes until a
value of q is reached above which the bands of stable frequencies are
indistinguishable from points. Since the stability curves all cross the
9

real axis for large enough q (see McLachtan,” p. 39}, the number of
intersection "points' is infinite. Associated with this value of q 1is a
wavelength which we denote by Amin . Thus, we define Ami , as the wave-
length below which the bands of stable wavelengths intersected by the
parabola (Eq. [2.25]), are sensibly points, corresponding to very little
penetration of the ice. Clearly this is somewhat arbitrary, depending as

it does on the accuracy of computation, but lmi does provide us with a
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useful bound bzlow which only discrete wavelengths penetrate the ice-field,

Similarly, for small g , and hence @ , the width of the unstable
regions intersected by the parabola (Eg. [2.25]) diminishes and reduces to
Hpoints." Also for large floes (k smail), or thin ice (ho, h, small) the
parabola is steeper and the bands of instability given by the intersection

are diminished.

In the tabie, both stable and unstable bands which are sensibly
points are omitted. As an illustration of the use of the table, consider
the case of water of depth 100 feet, and ice of thickness 4.17 feet. Then
for floe lengths of 100 feet, hmin = 162 there being no wave bands (but
an infinity of wave "points") which penetrate the ice for A < 162 , whereas
if the ice thickness is 16.67 feet, hmin has more than doubled to 344.
Also, note that all wavelengths penetrate a floe 600 feet long and 4.17
feet thick (apart from an infinity of discrete wavelengths) but if the
floe is 16.67 feet thick, there exists bands of wavelengths which fail to

penetrate the ice.

{c} Comparison of Results with Observation

A unique study of waves in pack ice was made by Robin7’8
voyage into the Weddell Sea aboard RRS JOHN BISCOE in 1958-60. He finds

that for fioces of around 1.5m thick and 40m or less in diameter,

during a

M. ..the main energy cut-off took place when floe diameters

were about one-third of the wavelength; iittle loss of energy

occurred when floes were less than one-sixth of the wave-

length across, while no detectable penetration took place

when the floes were half a wavelength or more in diameter.”

From the table, the ciosest comparison can be made for floes of
4_17-ft thick and 100-ft long. Then little penetration takes place for
A <162 corresponding to a floe length of five-eights the wavelength or
more as compared to the half wavelength observed by Robin.’8 it is not
possible to estimate the energy loss for long waves as this requires
knowledge of the transmitted wave amplitude and hence the full solution
of Mathieu's equation. However the table indicates that the first unstable
region corresponding to an energy cut-off or complete reflection of the

incident wave occurs when A drops to 248 feet or when the floe length is
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about two-fifths of the wavelenctri. This compares favorably with the

observed value of one third of a wavelength given by Robin.7"8

5. CONCLUS TONS

It would appear that the simplified model considered here confirms
qualitatively the following observations of Robin:

(1) The existence of a critical wavelength at which 2 major
energy cut-off occurs.

(2) The existence of a wavelength below which very little
penetration of the ice-Tield takes place.

The one numerical comparison made shows surprisingly good agreement

of theory with observation. It would seem that a study of more realistic

thickness distributions would prove fruitful.
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PART II

A. MODEL II. WAVE TRANSMISSION THROUGH A FLEXIBLE JCE-FIELD

1. FORMULAT ION

QOBLIQUE
PLANE WAVE

~N

SKETCH 2

A semi-infinite ice sheet is flcating on the surface of water of
constant depth H . A plane wave is obliquely incident from the region
-=2<y<g, Let 2(x,y,z,t) be the velocity potential of the liquid
motion. Then on the linearized theory of small amplitude water waves, ¢

satisfies

& +96 +6 =g 0 <z <H . 1)
XX vy zzZ
¢ =0 ,z=0 (1.23
@ = T =h
tt+gz v} at H (1.3)

- =<y <0 (free surface)

Let the equation of the ice field be

z = §(x,y,t) + # (1.5)
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where E(x,y,t) represents the displacements of the ice sheer above the

undisturbed free surface z =H . Then Bernoulli's equation gives

ad
p-p,=plg - 9% (1.5)
and we also have
ol 3
S (1.6)

on z =H , on the linear theory.

it s assumed that the ice sheet, having constant mass thickness h ,
is displaced from equilibrium by the differential pressure p - Py » and
that each element will be subjected to a force arising from the bending

stresses in the sheet.

It may be shm«m]0 that

- =-"}4
p-p, =9 E+ph(5 +gq) (1.7)
where
D = Eh° E = Young's moduius
12(1-v%) v = Poisson's ratio
p; = density of ice
and
- 2
VEEO_J,LE
By ax

Combining {1.5) and (1.7) and differentiating with respect to t gives

el +g¢ =-§V49_T§> z =h

<
ttz , 0<y<®= (1.8)
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where {1.6) has been used.

Since the ice extends to infinity in either x-direction, it is
possible to subtract out the x-dependence. Assuming also a time harmonic

dependence of frequency w® , let

(x,y,z,t) = Re {ﬂ(y,z) LS e'i‘"t} {(1.9)
whence @(y,z) satisfies
TR 25 0 | g<z<p , -m<y<=  (1.10)
3yt 3
g—g=0,z=0, mE Ty < (1.11)
Kg = %g , z=H , -®=<y<yg {1.12)

~ aE 2
K@ =(|-L)%g+l“l(——-k2) g—g , z=H , ( )
1.13

where K = u®/q = 2; , W=D/pg , L=—

Conditions {1.10) to (1.13) are not by themselves sufficient to give
a unique solution @(y,z) . Additiona! conditions regarding the vanishing
of the bending moment and shearing force at the edge of the ice field will
be imposed together with assumptions regarding the form of the solution
for y =+, Assumptions concerning the behavior of # and its deriva-
tives near y =0, z =H which ensure that Fourier transforms converge
will be made during the course of the analysis. These assumptions may be

verified once the final solution is obtained.

Note that the particular case k = 0 corresponds to a plane wave
which is normally incident upon the ice field; that is, whose crests are

parallel to y =0,
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2. PRELIMINARY DISCUSSION OF THE SOLUTION
The eigenfunctions of Egqs. (1.10), (1.11) and (1.12) for y <0 are

1
exp [y (K + an2)21 cas anz(n = 1,2, ...) where the a, are the

roots of the equation,
KcosaH+a sinatH=0 (2.1
n n n

It is shown in Appendix A that there are an infinite number of real
roots a, such that 'anl < 'an+1| , (n==1,%2,...) and that for

K > 0 there are also two pure imaginary roots = iao with eigenfunctions

1
exp fi:y(kg - 303)2] cosh 32 - There are no other roots. For a plane
wave, K < aoa so that there mey be propagation in either y=direction for
y <0, since the exponent is purely imaginary. Thus for y negative,

the expected form of a bounded solution would be
1
exp [& iy(ao2 - K®)*®1 cosh az +0 {exp ky)

For y 2 0, the situation is more complicated., The eigenfunctions of
Egs. (1.10), (1.11) and (1.13) are of the form

1
exp [ky (K° + bnz)zl cos b 2 {n=1,2, ...)

where the bn are the roots of the eguation
3 . _
K cos an + bn (I - L+ Mb, )sm bH =0 (2.2)

A detailed examination of the rcots of this equation is made in Appendix A,

It is found that for L <1 , M>0 , Eq. {2.2) has two purely imagi-

nary roots % ibo , a doubly infinite sequence of real roots = bn(n = 1,2, ...},
and four complex roots =% o » + Eo (the assumption L < 1 covers the range

of practical interest; the case L > 1 Iis not considered here), The exact
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position of the complex roots is not required. It is sufficient for the
time being to note that €y = A+ i where A >p >0 ; this is proved
in Appendix A. Because of this, co2 lies in the first quadrant, and N
Re coa >0 . Then it follows that Re c ' >k where c ! = (coa + K%)2

the square root being such that co' =c, when k=0 . A similar ine-
RS
quality holds for Eo‘ = (an + K2)Y2 . Thus for y > 0 there exist

eigenfunctions of the form
T
=z 2
expfi'y (& - bo) %cosh b,z

which provide the wave propagation if boa > K,
2432
expg:ty (k* + b, ) & cosh bz » {n=1,2, ...),

1
exp 3iy c.0 i cosh coz
and

exp 3iy Eo'& cosh Eoz

Thus for y positive, the expected form of a bounded sclution would be

ha -
expgtiy (b® - k‘?)zf cosh b z + 0(e )

iF b2

A > & |, the terms o(e_ky) arising from the fact that Re co' =

Re Eo' >k . If bo2 < K® , then there will be no wave propagation into
the ice. This is made clear in Fig. 2. For the incident wave, we write

k=~a_ sin® , and for the transmitred wave, k=b_ sin 9 where 8
o] © T T

is the angle of transmission.

Ther the incident wave is of the form

tay cos B+ fa x sin 6
o] o
e cosh az

whereas the transmitied wave takes the form
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ib y cos 8_ + ib x sin O
e ° T ° cosh boz

Clearly, since

K 2 sin ©
T = T —— 2,
sin BT 5 5 _ (2.3)
o e}
propagation into the ice will only occur if 3 sin 8 < bo . Whenever

a, sin 8 > bo , the transmitted wave becomes exponentially damped of the

form

1
z
-y{a ? sin® 8-b %)
e © cosh boz

so that in this case all modes decay exponentially and the incident wave
is totally reflected. Thus for given K, L, M, there exists a critical
incident angle 8_.;; such that an incident wave approaching the ice~field

at an angle 8 >89 is completely reflected (see Fig. 3). This will

crit
occur when 81 = 90o so that

-1
e = si 2.
crip = SR (bolao) (2.%)
The transmitted angle ST indicates whether a given incident wave
will be bent towards or away from the normal to the ice field. |If
bo < a2, then from Eq. (2.3), © < 9T , the transmitted wave is bent away

from the normal, and there will always exist a critical angle given by
Eq. (2.4). On the other hand, if 8, < bo , then eT < € and the trans-
mitted wave is bent towards the normal (see Fig. 4). In this case, an
incident wave approaching the ice-field will always penetrate the ice
regardless of the incident angle. |If ao = bo , no deviation of the

incident wave occurs.

For the time being, it will be assumed that a, sin 8 < bo so that
there exists an undamped progressive wave travelling into the ice-field.
In the case of normal incidence, @ = 0 , there will always exist such a

wave.

28



R-1313

3. METHOG OF SOLUTION

(a) Derivation of the Wiener-Hopf Equation

The solutien for the function @(y,z) is achieved by means of
Fourier transforms and the Wiener-Hopf technique. In order that the
Fourier transforms might converge in a strip of the transform variable
plane, the following device is used. The preceding section indicates the
expected form of the solution for large values of y . It is anticipated
that a prescribed oblique plane wave incident from y < 0 will give rise
to a reflected wave in y < 0, and a transmitted wave in y > 0 . The
amplitude and phase of the reflected and transmitted waves are determined
once the incident wave is prescribed. However, we shall fix the amplitude
and phase of the transmitted wsve beforehand and, hence, determine the

reflected and incident waves. The reason for this will soon become apparent.

Thus, let
ibo'y "
g(y,z) = e cosh b z + He™) , 0sz<=H |, y >0
1 (3.1)
where b, = (bo2 - K¥)° and bo' = bO when k = 0
+ia 'y ~fa 'y
and .9{‘/,2) = Je ° cosh aoz + Re © ¢cosh aoz + O(eky) R
0<Szs=H,y<0
(3.2)
where
1
aol = (802 - k*)° and ac' =a, when k =0

Division of the solution by I gives the solution due to an inci-
fag'y
dent potential e © 7 cosh aoz -

Consider, now, the function ¥(y,z} where

ib 'y
¥(y,2) = 8(y,2) - e ° cosh b z
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Then from (3.1} {(y,z) is exponentially small for y > 0 so that
the Fourier transform of ¥(y,z) with respect to y will exist in a
strip of the transform plane; a basic requirement for the successful appli-

cation of the Wiener-Hopf technique.

Now, t{y,z} satisfies

2 2

:_:+:_§.-k2¢=090<z<[{,-n<y<m {3.3)
y z
-g-i-:o’z=0,-m<y<:n (3.4)
ib'y
i =SLtae © L z=n, m<y<o

where A = (Mb - L)b_sinh boH

2
, 3 9
Ky = (1-1) g"z“FM(—a-- K*) _a_g_ , 2=H ,0<y<w (3.8
= ~ky -
¥{y,z) =0{e™) , y>0 , for each z (3.7)
+ialy ~ia'y ibly

¥(y,2) =Te % cosh a,z + Re % cosh a z-e © cosh byz + O(eky),

y <0 Tor each z {3.8)

It is assumed that outside some neighborhood of (0,H) ¢ and its

first and second partial derivatives are aiso

8e™™y , y>0 and 001}, y <O (3.9)
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It is further assumed that Y is bounded everywhere and that in a neigh-
borhoed of (0,H)

éﬂ éi = oﬁlq

Sy ' 37 0<B<I (3.10)

where r® =y® + (z - H)®

The reason for the assumption given by Eq, (3.10) requires some
explanation. There is no a priori reason why the velocity components
should be non-singular at the edge of the ice-field. Such singularities
invariably occur in potential problems at the confluence of two boundaries
on which different boundary conditions are satisfied. However, physically,
we require that there be no breaking of waves at the interface as this
would introduce an arbitrary constant to determine the amount of energy
loss which occurs. On a linear theory such a breaking phenomenon is
represented by a sink singularity in ¥ so that the velocity components
would be 0(}) in the neighborhood of the leading edge, corresponding to
the logarithmic singularity in { . By insisting that the singularity be
of the form (3.10}, loss of energy due to breaking is just avoided, at

the same time allowing any milder singularity to gccur in the analysis.

From conditions (3.9) and (3.10), the Fourier transform

Y(of.z}=j‘ Wly,z)e’ My (3.11)

-

exists for 0 S z S H, and is regular for @ (=0 + iT) in the strip
D: - k<7 <0 of the complex @-plane (see Sketch 3, p, 37). From
Eq. (3.3)

@ 2 2 s
(2—% + éfg - kEW)elaydy =0
- 3y az

and integration by parts gives

2
[-Ji— - (d2 + kz)] ¥{o,z) =0 ,{@deD, 0=z <H)
az*®
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1
Define v = (0’2 + k.‘?)2 such that the cuts extend from * ik to % io

along the imaginary axis in the ¥-plane. Then,
(i) As @ =0 (real) ~= , y(c) ~ ¢

(ii) Re (y) > 0 everywhere away from the cuts

and

¥(2,z) = A (@) cosh vz + A,(@) sinh Yz

The transform of condition (3.4) is

¥

az(Cf,Z) = 0

1im
z=0

so that A (@) =0 .

From condition (3,10) it may be shown that

lim ¥{e,z) = ¥(o,H)
z—H-

and '

LB i
lim 35 (o,2z) = 52 (o,H)
z=H-

Thus

Y(U,Z) = Y(G'DH) %& (Q’ [ D) (3.]2)

snd S (@,H) = YH tanh YH ¥ (a,) (@< D) (3.13)

In order to obtain a Wiener-Hopf eqdation, the following notation is used.

Let

¥(w,z) = ¥o(e,2) + ¥_(a,2)
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where

-]

vaa) =] e ™y (3.18)
o g

exists for 0=z <H and is a reqular function of o in D+: T>=-k

and

o 3
¥_(ar,2) =j y(y,z)e'dy (3.15)

exists for 0 <2z £ H and is a reqular functionof @ in D : T <0

Then

lim ¥, (0,2) = ¥, (o,H)

z—H=
¥z 3y,
zl—i‘: =7 (ez) = e {o,H)

524
In future Yi (@, H) and —gf (x,H} will be abbreviated ta ¥+ and Y.!

respectively.

Now the transform of condition (3.5) is easily seen to be

iA

KY_ = ¥' -« —2
@ + by

(¢ e b)) {3.16)

Condition (3.6) is more troublesome. It is assumed that ali y derivatives

a . . &
of 3% (y,H) up to and including g;;%; (y,H)} are

oe™) , y>o0 (3.17)
It is also assumed that
Fy . !
(y,H) s D(—E} (0<B<1i)asy-— 0+ (3.18)
dy*dz y
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Then the transform of condition {3.6) exists and integration by parts

gives
© - i . 2 .
‘L Y k) }Tﬁ (v,H) 'Y dy = - co + i®aa + (&° + 26%) (ca - P@gy)

& oy
+ ¥ ¥, (o € D+)

(3.19)
where condition (3.17) has been used, and where
o 3 Joy
&y ~[3ye ) -p | Shtv ]
1 [ z ]y=0+ 2 By AL m0+

cy :—;5 [%%(y,H)_]y c, = %';[?;(Ysﬂ}]

=0+ y=0+

Thus the transform of condition (3.16) becomes

Re, =¥ ' [ - L+MW'] =M le -ioe, - (@ + 28) (e -iwc)] (@eD)

{3.20)
Now add Eq. (3.16) to Eq. (3.20) and use Eq. {3.13). Then

{K cosh vH = v (1 = L + My?) sinh yH% o+ i K cosh YH - ¥ sinh YHf Yo

==Y sinh YH ; ET:i%_T + M [C4-50c3 - (o® 4+ Zka)(ca'iacli]E {o e D)
o

(3.21)
Equation (3.21) is a typical Wiener-Hopf equation holding in a strip of
the complex @-plane, Although Eq. {3.21) involves the constants ci(i=],2,
3,4), it will be shown how ¥' and hence Y may be determined in terms

of just two constants.
Let

K cosh YH - v(1 - L + My*) sinh YH = £, ()

(3.22)
K cosh vH - v sinh YH = fo(d)
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Then

and Eq. (3.21) becomes

iA

f -fo=-(ny‘*-|_)ysinh\m

‘Fl I(M'Yq‘ - L) Y+' g M [c4—idc3 - (qu. Zka)(%-i&cl)]g
&)

- - fo;(MY.; ) =R [ -, - (P Zkz)(ce-iﬂcl]z (« ¢ D)

@+ b
[

It is shown in Appendix B that we may define

£,00) K, ()
f @) k(@)

where K (%) is regular and non-zero in D

it is shown that

K, ()

and

[
et

K_(2) = o(z

Then (3.24) may be written

K, (@) 3(MY4 - L) ¥ - M e -, - (o® +42k2)(c2-}acl)}z - A [

i b

(3.23)

(3.24)

(3.25)

respectively. Furthermore,

o), ol ==, (@en)

v el ==, (=ep)

{3.26)

(3.27)

K (2) = K (- b ')

= - K_(a) 3(Hy$ - L) Y. '+ M fe -ioc, - (a2+2k2)(c2-iacl}§

_m[

K (@) - K, (- b_")

@+ b ¢
o}

@+ b !
o

] e

(3.28)

J
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it is clear that each term on the left-hand side of (3.28) is reqular for
o€ D+ , whereas each term on the right~hand side is regular for ¥ e D_ .
Since the two sides are equal for o ¢ D |, this defines a function J{a)

reqular for all (finite) o . The determination of J{(®) 1is achieved by

a consideration of its behavior as IU] - =,

Consider the left-hand side of Eq. (3.28). From (3.20), it is equal
to

K+(d)'K+(-bé) }

K+(a){s<&_' Y -iA{ vy (ve0D)
Q

11

Now T+ N ?+‘ -0 as |e| ~= in 0, from condition (3.10)}, (see Nokle,

p. 36, Eq. [1.78]).°
Thus, since K+(0) =0(c®) , |a] == in D, , then J(2) = o(e®) as
0k s el ~= in 0_,

o{e®) as |o] ~= in .

Iwi - @ jn Db, Similarly, since K_(a)

and ¥ '~ 0 as || in D_, then J(@)

]

Hence

J@) = o(®) as |a| - = (3.29)

2
Thus by an extension of Liouville's theorem} (Sec. 2.52},

J{@) = Ca+ C, ({, C, constants) (3.30)
Equating each side of Eq. (3.28) to J(&) , solving for Y+‘ and Y ',
and adding, gives

iAK£(-b")
(ry*Ls seL + ¥1) = (0¥ = {3(0) - “:bé 2 }(K_,_}d)_ - K_]@)

T —
Note that this step is crucial to the ensuing argument. 1f we let 2 = 1|
in condition (3.10) indicating an energy source at the origin, then all we

can say is that ¥ , Y ' are bounded as |&f = in Di+ and in “he sub-
+

sequent argument we find that J{&) = & + Ca + ¢ . Then the solution
o =

is no longer unique; the strenqth of the energy source at the leading edge
of the ice-field must ke given in order to determine the additional constant.
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from Eg. (3.13), this may be written in terms of ¥ . Thus,
1AK_ (-bi)
‘ : + 1
V(o) = {ie)- — 2} , (3.31)
° K_,_(a){K-Y tanh yH]
or
: N
Y (o) = {ue) - Bhelba)] ' - (3.32)
° _(@{k-v(1-Lwy ) ean b vt
Equation (3.12) and the Fourier inversion formula give
r cosh -l
2 cosn_ vz 44
vly.2) 2-rj TloH) gy e de (3.33)
where C is some path in D as shown in Sketch 3.
ﬁ T
SKETCH 3 ia,
tial a-PLANE
ia]
ik
¥ 3 I l
_OO —bO o o

AIIILI IS I, /////////ZD

LS L LSS 777777

-ik
1—ib,'
LI t+—ib *—ic!
_ico 2 o
¢—ib
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The constants G, and €, will be determined from the conditions of zero

r Y =0+
Assume for the time being that this has been done, Then it is necessary to
check that Eq. (3.33) with ¥(o,H) , given by either Eq. (3.31) or Eq. (3.32)
does in fact satisfy the conditions of the problem. Now ¥{x,h) is 0(e™%)
as Ial -« in D sc that the integrai in Eq. (3.33) is uniformly con-

vergent for 0 =<2z =<H , all y ., Also, for 0=z <H, all y , the

shearing force and bending moment at the edge of the ice, z =H

integrals obtained by differentiating {¢{y,z) with raspect to y or z

any number of times are also uniformly convergent. Since the operator
2
E%g + 3%%—- K applied to ¥(y,z) makes the integrand vanish identically,

it is clear that condition (3.3) is satisfied for 0=z <H , all vy .
Similarly, condition (3.4) is seen to be satisfiedon z =0 . To verify
condition {3.5) for y <&, Eq. (3.31) is used in Eq. (3.33), and the path
of integration is deformed upwards in such a way that the ends of the path
tend to infinity along lines in the upper half-plane. It is now permissible
to apnly the operator K - 3 to ¥(v,z) and put z=H ., Thus

iAK.(=b') -id
{(K¥= ?‘r‘zll) = %ﬁ'f {J(CY) - -—'&E.—O—} i—(a-; do
2=H c o

where C' 7is the deformed path. It is clear that the only contribution
to the integral arises from the only singularity of the integrand in D

+ d
which is 2 pole at o = ~ bo' . Thu, for y <0,

H
lboy

{k§ - ?ri)hﬂ = Ae

which verifies condition (3.5).

To verify condition (3.6) for y > 0, Eg, (3.32) is used in Eq. (3.33),
and the ends of the path of integration are deformed downwards so as to
tend to infinity along lines outside D in the lower half-plane. Now for

vy >0, it Is possible to differentiate {y(y,z) any number of times and
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= 2
{K - (1-1) g? -M(:—E - &%) %} ¥ (y.H)
y

| ¢ TAKL(<b’) 1 _~ioy
=z—ﬂf,, Ve - o . i_(a) dot =0

The boundedness of ¢(y,z) everywhere follows from the fact that W¥(y,z)
is given by a uniformly convergent integrai for 0=z <H , all y . A
differentiation with respect to either y or z produces an additional o
into the numerator of the integrand so that the discontinuous part of the

integral behaves in a similar manner to

= P da ~ log r + bounded terms near z =H , y =20

. j-a omioy -u(4-z)

0
Thus, condition {3.i0) is verified.

Condition (3.7) is verified by using Eq. {3.32) in Eq. (3.33) and
deforming the path of integration into the lower half-plarz, taking into
account the poles of the integrand. Since the singularity of the integrand
nearest the real a=axis is at a distance greater than k from it, it is
clear that V¥V and also its first arnd second partial derivatives are
O(e-ky) , for ¥y >0 and each z . A similar argument may be used to
verify condition (3.8). |In this case, contributions are obtained from
the poles of the integrand at o = - bo' , 4= ao' , together with

contributions of O(Eky) .

The conditions (3.17) and {3.i8) require special attention. Now

& o e”"¥Yytanh vH

o ] n@ &
9z'z=H 2m J. 2 K_(a,‘s[f(-.y(i-l_m\/‘}tanh vff]

3s
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where

iAK, (-b!
Fla) = He) - T+;.L)
o
and where the path C has been deformed so as to pass beneath the point

o == jk ., Write

¥ tanh vH = K-y{l-L)tanh ¥H . ]}
K=y {1-L+My*)tanh yH  NY* K=v{1-L+My" Ytanh +vH

Fy (@)
Then ——— s regular and tends to zero in Im (¢) < = k, so that

MvEK_(a)

I—I Fy (o) e io¥

— dee = 0
am My* K_(@) ¢

Thus

dor (3.34)

P e ST
°z'H 27 Jg My‘*x_(a){x-y(l-'..mv*)tanh YH}

where the integrand is DQ%;) as |l - in D .

It is clear that all y derivatives up to and including Séz(gg)
are bounded for y 2 0 , and deforming the path of integration arzund H
the poles of the integrand indicates that all derivatives are D(eﬁky)
for vy >0 . It may be shown in a similar manner to the verification of

condition (3.1) that

~4

;4 (g%)H = 0(log r) r¥=y®+ (2-H)° near r =0
Y

Thus conditions (3.17) and (3.18) are verified, and V¥(y,z) does indeed

satisfy the condi‘ions of the problem.

4o
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(b} The Far Field

In order to demonstrate the form of the solution for large y , it

is convenient to use series representation of the solution.

Thus, for y > 0, the integral expression (3.33) may be written
in terms of a sum of the residues at the poles of the integrands (see
Appendix B). Thus,

-c'y
. ()
2F, {-ict)e c cosc z casc_H
1 Q Q [e] (]

¥{y.,z) = :
c(')[z <, H(1 -L+Mc°4)+(l -L-v-SMco'* )sin2 <, Hli(_(-i c(")

- __l - - -
2F (-ic')ec“’yc cos< z cosc_H
+ 1 [+] [+] [+] [s]

Eiz&oﬂ(i-LmE: 1+(1 -L+5MEC;" )siano H]K_(-EE(',)

- N -b;y
ZF, (~ib!)e 5 cos b 7 cos b H
- :E : n n n n
"
N 4 4 . =Tht
n=1 bn[zbnﬂ(I-L+Mbn)+(1-L+5Mbn)sm2anJK_( i)
(3.35)
For y <0, similarly,
ib 'y
¥{y,z) =-e ° cosh boz
. _ -|a(')y laéy
i Zlac cosh az cosh aon' ‘r Fx(aé)e F, (-a('))e }
t . o b ' ’
ao(ZacH + sinh Zaol-,) K, (ao) K, (-a“))
bly

= 2F, (ibMe " b cosb z cos b H
_E: 1 n I n n

1 -~
n=1 bn[anH+ >|n2an]

{3.36)

a1
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Comparison of the coefficients in Eqs. (3.35) and (3.36) with the
coefficients R and I occurring in Egs. (3.1) and (3.2) indicates that

PG s ') K- ")

= F, (- 50'7 K+(+ aoﬁ

R
I (3.37)

and
o . o
ia (ZaoH + sin h ZaOH) L 3, )

~ 1
Zao cosh aOH F1( 2, }

(n™ {(3.38)

The reflection coefficient & is defined as the ratio of the ampl itude of
the reflected wave to the incident wave at infinity. The transmission

coefficient 7 is defined simiifarly.

Now

28
oz

E-13
ot z=H

so that the elevation & 1Is given by

- 1 o8 ikx-imt}
§(X,Y,t) Re{ im(g:'!-)z=H e
Thus the elevation of the incident wave is
a siph a H Tkx+ialy = jwt
Eleay,t) = Re{221 ¢ 0 T} (3.39)
with amplitude
ao sin”k aOH
O (3.40)

w

L2
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Similarly the amplitude of the reflected wave is

a sinh aH
‘Rl _Q____;;__Jl_ (3.41)

The elevation of the transmitted wave is

b sinh b H ikx + ibo‘y— imtl
(x,y,t) = Re !-O———!w—o- e ‘ (3.42)
b _sinh b H
with amplitude ” so that the reflection coefficient is
] foaty ]
7e o IR1 F1(ao) . K+\ ao'. _ IF]. (aozl (3.43)
Z li [}
1z Fil=g, K+(5;) ]Fl('ao]l
since
K, (-a')
r._.9 = 1 (see Appendix B)
K (af
+'%0

and the transmission coefficient is

- al H H H - ?
7 - bosnnh b H - L O(Zao +sinh 2aDH)Ssnh bOH |K+( ao)|
= = 1
3o5inh 3 H i ac2 sinh 2a_H iF (ﬁao),

(3.44)

(c} Determination of J(@)

There are stiil two conditions which need to be satisfied at the

leading edge of the ice before the solution is uniquely determined. These

are conditions which express the fact that no energy is put in or taken

out of the system at the leading edge of the ice-field, A derivation of

these conditions is given by Hildebrand, > They are
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2 2
L 22=0 (3.15)

(3.46)

(3.57)

(3.48)

og—(——gw )+D(lv) e oy
Y 3y Oyox
where
3 [Fg  FeY . .
- D E— 6y2 * e is the transverse shearing force along y =
i . -
(1-v) D ayax is the twisting moment along y = 0
& -1
(gyg 2—5) is the bending moment along vy = 0
We have
- 1 o 1kx-lw£i
§ = Re R §
and the conditions (3.%5) and (3.46) in terms of & , become
2
&~ Bf aﬂ\ - =
ay_E(OZ)Z=H k( =H =0 -Y‘0+
( )Z-H- (2 )k ( H=0’ Y=.0+

These conditions, in turn, may be written in terms of W%(y,z). Thus

ib_b!sinh b H [b;f+(2-v)k2]

cg—b o=@ 2EY
ib blsinh b H [b02+(1-v)k3]

(3.49)
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and

3% 2 2 0V . 2 2
ayz(s%)z‘—'l'i - VK (rz)z=H bo sirh boH ':’c\I * Vk]

. 2 P>
bo sinh boH E,O - (I-\-')k:] y = 0+
(3.50)

In the case of normal incidence, k = 0 , and the conditions on § are just

5 08 _ _
aye(az) - °© . ¥= (3151)
338 - -

ayaiaz)z=H = 0 , y=0+ (3.52)

6

which compare with Stoker

Now if the expression (3.35) foer U(y,z) is differentiated with

respect to z we obtain, for z =H ,

. L o
(%§Jz=ﬂ = F (-Tc )e c°y9(col+ﬁ (-ic))e coyg(co)
= —b'\/
+ > F(-ib)e " alby) (3.53)
n=1
where
o(B) = 2(K cos BH + B{1-L) sin BH) cos BH
©OMBY - B'K_(-7B') [2BH(1-L+MB*) + (1-L+5MB®) sin 2BH]
and

N

Bt =+ (5° - &°)
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Remember that

iAK+(- bo')
F{e&) =Ceo+( - —m———
1 ( ) 1 2 (a'l'bol)

The conditions (3.49) and (3.50) when applied to (3.53) give

~

(c2?-vi®)F, (-iet)gle,) + (€5 -wi¢)F, (~i€l)a(c,)

+ i (br'f-\;ka)n:1 (~ib )g(b ) = b sinh b H [b:-(l-v)ke] (3.54)

n=l

c(')[cgz-(z-v)ka F, (~icale ) + e;[af-(z-v)f] F (=189

[--]

+ Z b:'{b:‘a-(z-\’)kz] Fl(-ibrl'l)g(bn) = 'ibobc"sinah bOH [boza _ (i-vl‘)kz]
n=1]
Now (3.55)
iAK (- b )
+ o)
F., (& = C + 0 - — D2
(@ =t +C, -
o
where

A={M®*-L)Db sinh bH
O =] o]

Clearly, there exist two equations for the determination of €, and C; .

After some algebra they may be written in the form

(3.56)
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where
Ay, = - ico'2 [co'2 - (2-v) K} g(co) - iEo'2 [Eo'a- (2-v) &%) g(EO)
[==]

-1, b I F - (22v) K] glb) (3.57)

n=1

Az = ¢t e '® - (2-v) KT gle) + et [e)'® - (2-9) K71 glE)
+ Z] b' b ' = (2-v) 1 g(b ) (3.58)
-
cl
B, = - ib b ' sinh bH [b® - (1-v) K] - AK (- b ") T‘”o'_bo (e '*-(2-9)K°] gle,
EOI 2 - bn. 2
e (87 - @) @1 9G) + Y st b, - @9 alby)
0 o] n=1 n o ]
(3.59)
Agy = = fe (e 1® - W) ale ) - i) (B 1%~ v°) g(€)
-3 Z] b, (b, ' = V2 g(b ) (3.60)
n'_i
Ae = (e % - W) gle)) + (€% - vi) g(c)
+ Z‘ (6,17 - Vi) glb,) (3.61)
o

L7
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B, = b, sinh b.H lboa - (1-v)K°]

(Co,a_vkz) (E .2_\,k2)
T ARG b i sle) T T 9(6)
o o o [¢]
i 2 .2
(b, ')

n=

Once €, and €, have been determined, the solution of the probiem is
complete and, in particular, the expressions (3.43) and (3.44) for the

reflection and transmission coefficients may be computed.

Unfortunately, the determination of the constants €, and C, above
presents enormous computational difficulties, involving as it does the

complex roots bn of the transcendental equation
Kcos bH+b {(1-L + M6 *) sinb H=0
n n n n

Thus, whereas the solution to the full linear problem has been obtained,
it will be necessary to resort to the shallow-water approximation to
derive the solution in a form more suited to computarion. It is possible,
however, to derive a relation between # and 9 which will be done in the

following section.

L. RELATION BETWEEN # AnD 7

Although the explicit determination of f? and ff presents enormous
computational difficulties, it is possible to derive a simple analytical
relation between # and 7‘, by an application of Green's theorem. We
have seen that the two-dimensional function B(y,z) satisfies the Fol low-
ing conditions (Eqs. 1.10-1.13).

L8
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.2 2
0,98 \Byop,0<z<H, »<y<m (4. 7)
e P
oy oz
E-g:O,z'—'O,-m(y(a (h.z)
oz
Kﬂ:%z—,z_ﬂ..m<y<0 (%.3)
kg = (1-02 + M(a—z-—- -ke)2 8 ieH,0<y<a (h,b)
oz aya oz ! '

Also @# s continuous and satisfies the conditions (3.47) and (3.48),
namety

Z 3 2 08 -
— (5>} - vk ) =0 = O+ (k.5)
37 Be sy G2) y
3% .ag 2 &_,0f
° (2] =0 y=0 b,
5y3(5§?z=H' (2-v)k dV(sEJz=H y = 0+ (4.6}

Green's theorem applied to the functions @{y,z) and its conjugate
@(y,z) may be written

JL @8- 67 p)dydz = [(8 %G s (4.7)

where S is the arez of the rectangle formed by the lines z =0, z=H ,
and y = iyo , C s the boundary of this rectangle, and n denotes the
ncrmal directed to the exterior of the boundary. Since @ and hence E

satisfy Eq. (4.1}, the left-hand side of (4.7 ) vanishes and the eguation

kg



R-1313

reduces to

Im jc 3 g% ds = @ (4.8)

It Ts assumed that y_ s so large that for y = :byo , B(y,z) may be
replaced by its asymptotic form as given by Eqs. (3.1) and (3.2). Thus

ib 'y

ply,.2) = e @

cosh bcz . 0<z=H (4.9)

-ia 'y +ia !

Y
0
° ‘0 cosh aoz + Re

0szsH

(&.10)

9(-‘/0,2) = Ie cosh az

Now the contribution to Eq. (4.8) from z = 0 vanishes by virtue of Eq, (4.,2).
Also, Eq. (4.3) implies that the contribution fromz =H , - = <y <0
vanishes. Thus Eq. (4.8) becomes

Y - -
° 3@ (y,H Y LY _
,mJ; P EZ_(}’.:_ldy + Im gm ry)modz-lm J;(ﬂ ry)y____yodz =0 (&.11)

The first term presents the most difficulty, so this will be left to the

last. Substituting the asymptotic form for @ into the second integral

gives
H c -b(')
L ] —_ 1
Im ]o-:bocosh boh dz r.bo(ZbOH + sinh ZbOH)

Similarly for the final term in (4.17), we find

| -ialy +ia'y.\. +la'y _ -ialy i
'(I 0’ c"))(]:e °% _ R e c“'J)co::sh'sagH dz

=
- a —Lg—o(ZaoH +sinh 2a H) (J1]* - |R]?)

5o
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The first term in Eq. (4.11) may be written

057 2 38 3B(y.H
&y § ot o

o dy

Y
Im

=|=

where Eq, (4.4) has been used, ard

yo 3g 3p
" a
Im % 3; 3z dy = Q

It is possible te integrate this expression by parts twice to obtain the

following result

M
im X

-
of).

M 38, 3 : Y
- im E[""""rz’a ol TG 3 &

where all the integrated terms were purely real and hence vanished when
the imaginary part was taken,

Now the first term vanishes at y = 0 from condition (4.6) and the
second term in brackets is seen to be purely real from Eq. (4.5) and so
it also vanishes. The value of this expression at the top limit Yo may

be determined, after some algebra, to be

-#b's % sinh 2b H
Q O o]

1-L + Mb *
(o]

Combining the contributions from each of the terms in Eq. (4.8), we find

that

&1
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- 1 & - '
Hbo bO sinh ZbOH bO

TR
[+]

(26 H + sinh 2b H}
I-L + nbo" o ©

a 1
+EE: (ZaDH + sinh ZaOH) (1l2 - Irl®) =0

This may be written

b Lpp = a' 2
2 2b _H+sinh2b H(1+ ° )] = (2a K + sinh 2a H)() - Jﬂ_,

% RS B (R f1f?
(&.12)
Now from Egs. (3.43) and (3.44),
22 _ [R[®
[1/?
and
b?® sinh® b H
4-2 _ .o o 1
2 . .2 2
a, sinh aOH iI]
b sinh 2b H 1 1
- _o o) .
a, sinh 2a H (1-La#tb °) |T]?
so that in terms of 4"2 and ﬂe , Eq. (4.12) may be written
D72 + A% = (4.13)
whers
2 i - 4 o - 4
0 - a, ] bo [(] L+Mb° )ZbOHISthbOH'P (1 L+5Mb0 )] (5. 11)
by® a; /sinh
o [ ZaOH sin 2a°t—| + ]

52



R-1313

The Case M =0

In this case

ZbOH
aoz b ! Sinh 2b R +1
=2 _9o -
D_b?a'“ L PR (4.15)
[+] G _0_.,.]
sinh 2a H
o i
where
K
K=a tanh a H , —— =}F tanh b H
o) [¢] I-L [+] Q
so0 that

a Zp ! [(I-L)2 b 2H—k2H+K(1-L)]
D = -2 © o , (&.16)
[e 24 - KH + K|
© Jd

which agrees with thz value obtainad by Weitz and Kelier.3

6. SHALLOW-WATER APPROXIMAT ION

(a) Formulation and Solution

It is clear that the full solution of the linearized problem presents
overwhelming numerical difficulties and it is desirable to examine the
solution on the basis of the shallow-water approximation. Instead of con-
sidering the limit of the "finite depth' solution, it is desirable, for
the sake of clarification, (and certainly easier) to rederive the solution

from the original approximate equations based on the shallow-water theory.

We return to the Eqs. (1.1}, (1.3), and (1.8) satisfied by the
velccity potential ®(x,y,z,t) .

@xx+§yy+ﬁzz=o , 0<z<H (5.1)



+g¢ =-%Vq"1’ -—h ¢ ,Z2=H ,0<y <=
cecx<e  (5.4)

We have seen that additional conditions at the jsading edge of the ice-field

are given by the equations

3 azg azg aag

— (—= —2) & (}-v =0 =H, = (& 5.5

oy (ayz ¥ axg) (1) Dydn® £ Y 5.5
is + Vv é.a_g =0 =H = 0+ 5 6
3y ad i Y (5.6)

where E&(x,y,t) is the elevation of the ice. These equations ensure that
no energy is put in or taken out of the ice at the leading edge. As before,

it is convenient to write

2(x,v,2,t) = Re {8y, 2)e"* - 0t} (5.7)

so that @{y.,z) satisifies

2 2
5_3+3—§-k2¢=o ;, O<z<H,-=<y<0 (5.8)
ay" oz

.g_ggo ’ z =0 3 Yy @ (5-9)

ok
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Ku=%g , z=H , en<y<O0 (5.10)
o (1-1) &8 & _ .= N o9 = -

K@ = (1-1) 5 t M (aya k®) 2, z=H , 0<y< (5.11)
2

—:——2(%5)-\)!«2(2—:’)-0 . z=H ,y=Or (5.12)
y

3° (8 i? O (3B _ - _
3 (az) - (2=v)k Sy (Bz) =Q , z=H, y-=0+ (5.13)

oy

In employing the shallow-water approximation the potential @ is ex~-

panded in powers of z , and it is found that

Bly,2) = wy) - 3 27y, - ) (5.14)

satisfies Eqs. (5.8) and (5.9) up to order z°. A precise derivation

of the theory is given by John‘h who concludes that the theory is valid
provided the depth of the water is smazll compared to a wavelength and to
the minimum radius of curvature of any immersed body. [f the expression
(5.14) for @(y,z} is substituted into (5.10) and (5.11), it is found
that Y(y) sarisfies

2
(é_; - K)o+ %:y =0 , o<y < (5.15)
3y

3 2
H(bz—-ka)w (I-L)(La-kz)1:+l<§¢=0 , OG<y<= (5.16)
ay*® ay

where
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2
MK En®

2
¢ 12(1-v30g

2
2
Koax.fn-!gﬁ , L=

in terms of ¥(y) the conditions (5.12) and (5.13) become

3® 2y & 2 _
(—-v)(— - KE) ¥y) =0, y = 0+ {5.17)
aya Bya
2 o
2L A SR ¥ =0, y = (5.18)
3 2 2
Y 3y 3y
In addition, from the shallow-water approximation,
&
¥{y) and _%iil are continuous {5.19)
Y at y==0
iKo'y -iKo'y
Now the Eq. (5.15) has the solution #(y) = e + Re where
1
Kol = (K02 - kz)2 and the positive square root is taken, and KD >k for

a progressive wave, The form of the solution is such as to represent an
incident wave of prescribed amplitude, and a reflected wgve’of {complex)

i
amplitude R . Eq. (5.16) has a sclution of the form e Y where

k' = (k® - K¥) (5.20)

and the kr {n=10,1, ... 5) are the roots of the equation
6 2 2
M © + (-L)k K, (5.21)

This equation is a cubic equation in kn2 having solutions

k®=A+8 (5.22)
(Cont*d)
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2 - eA + %8
(5.22)
1-%a = %A + B
where s
« 5 Y3 1fz 9 /
3
A= (—22'-‘-) 1 + (] +5‘.(_|_‘_Ll.) (5.23)
274K *
o o
(2 ifs 127 s
3
R I T ey (5.28)
27MK° i
and

- e2”i/3 = (_] +.J§.i)/2

3
In all cases of practical interest L <} and ﬂil:&%— <1 so that
A+B>0. 2K,

Thus k® is real and positive while P

The square root in the expression kn' = (kn2 - kz)i is chosen such
that kn' = kn when k=0 . Now for y >0 a scluticn is re?ﬁéfid
representing a progressive wave. Clearly such a solution is e .
Other solutions are permitted provided they are bounded as y — + = |
Energy considerations exclude the possibility of unbounded solutions. The
only possibilities are those roots kn which have positive imaginary parts,
so that el n'y decays exponentialzy for increasing y . There are two
such roots. lThus let k, =+ (k12)3 have a positive imaginary part. Then
k, = - (kea)i also has a positive imaginary part, since k, = - k.
Hence the solution for y > 0 may be written

ik 'y ik 'y ik_'y
2
Aoe ° 4 Ae +Ae (5.25)

i {y)
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The unknowns are the complex constants Ao' Al, A, and R, and
there are just four conditions to be satisfied by ¥(y} . Since ¢ and

Oy /Ay are continuous at y = 0 , then the following equations must hold.

AL+ AL +A, = 1T+R (5.26)

kA, + lq A + k'R, = K Y() - R) (5.27)

Alsc, conditions {5.17) amd (5.18} give the equations

2
:E: e - (1-9)K] A, =0 (5.28)
i=0
2
2 k' k® TkE + (19T A, = 0 (5.29)

i=0

which together with Eqs. (5.26) and (5.27) are sufficient to determine
the unknowns. The problem is solveud once the constants A A, A, and R

have been computed, and expressions may be derived for physical quantities
of interest.

(b) Reflection and Transmission Coefficients

The transmission coefficient is the ratio of the amplitude of the

transmitted wave to the amplitude of the incident wave at infinity.

Now for large positive vy ,

H 1
Iko y

Wly) ~Ae (5.30)

since the other two terms in Fq., (5.25) decay exponentially with increas-

ing y . The elevation &(x,y,t) satisfies the Eq. (1.6}, namely
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%% = - %% on z=H

and in terms of ¥(y} the elevation may be written

B | By lkx ¥ ikdy- Twt (5.31)

gE(x,y,t) = Re P

and the correspending amplitude is

Hk *
== la | (5.32)
iKo'y i .
The incident wave is given V = e so that the elevation of the in-
cident wave is
. ikx + iK'y - fgt
ely,t) = -Re JHKC e 7} (5.33)

with amplitude E Kﬁz . MNote that this term contains the dimensional unit
amplitude of the incident wave and hence it has the correct dimensions.

Thus the transmission coefficient % is given by
p=]

kO
== Al (5.34)

K
o}

and in a similar manner, the reflection coefficient ?2 is given by

£ = [r| (5.35)
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(¢) Pressure on the Bottom, z = D

From Eq. (1.5) the pressure on the bottom in excess of atmospheric

pressure p, is

38
p=o (G + pgH (5.36)

In terms of the shallow water potential U¥{y) , we have

p(x,¥,0,t) = p Re {-iw@(y)eikx - imt} + pgH (5.37)

If the local effects represented by the exponentially decaying terms in-
volving A; and A, in Eq. (5.25) are ignored, then the amplitude of

the pressure fluctuatior on the bottom under the ice is

p(x,y,0,t) - pgH = Re (5.38)

ikx + ik_'y - iwt
1 Pe ©
where ]Pi = pw IAOI

It is convenient to non-dimensionalize this in terms of the amplitude of

the incident wave. Thus we define

P L Y

=
HKO gHKo
P\

since K.o3 = uP/gH .

Hence (P is a measure of the sbsolute value of the amplitude of the pres-
sure fluctuation on the bottom z = 0 , under the ice, compared to the

amplitude of the pressure fluctuation on the bottom under the free surface.
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(d) Relation Between ﬁz and 7 for Shallow Water

The Eqs. {5.26), (5.27), {5.28), (5.29) which determine the coeffi-
cients R and Ao conceal the relation existing between 7 and T .
This is most easily derived by taking the limit for small H of the rela-

tion which has been derived on the basis of the full linear eguations.

From Eq. (4.13) we have
DT 2 + RZ =

where

a2 bt L(]-L+Mb°4)2bcﬁ/sinh2bol-i + (1-L+5M bo&)]

a .
° [anH/s inh2a H + 1]
as

2b H
o

2
H-0 , STah2s T U 3 D(bOH)
50

D = 2 2 (]-L+ 3Mb*%)
o
b
where bo is the real positive roots of the equation
K=b2(I-L + Mb_*)H
o o)

since tanh b H ~ b H(1 + 0(b_h)>.
o o o

This equation may be written

T|=
£
5
"
1
I

Ti=
n

W

:|:|Em
It
=

& -
Mbo + (1-L)no =
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Clearly bo — ko in the shallow-water notation and bo' - ko‘. On the

same basis

K=22 sothat a —K and a ' ~K_
o ] 0 o o

Thus
K=2 k!
492 O . 4
b) SR (1-L + 3Kk °)
o
and for shallow water
2
&2 (1-L + 3Mk *)T% + &% =
K ZK ! 0
o o

If we introduce the incident angle € and a transmitted angle ST by

writing
k=K s5in® =14 sin B
o] o T

then the above formula becomes

9
Ko cos T

Tors UL +3Mk)7° + £% =1 (5.39)
[o]

This relation will provide a c¢heck on the computed values of # and 7 .

(e) The Critical Angle in Shallow Water

As in the case of finite depth of water, the constant % in the
ikx
e

x-variation determines the angle at which the incident wave enters

the ice-field. Thus if we write k = Ko sin 0 , then the incident wave is

of the form
iKycos @ + iKx sin ©
e © o
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so that the incident wave makes an angle & with the normal to the leading

edge of the ice~-field, as shown in Fig. 2.

The reflected wave is of the form

~iK y cos @ + iKx sin 8
e © o

indicating that the angle of incidence is equal to the angle of reflection.

The transmitted wave has the form

1
L 2 2 .2 3 . . . .. .
e|(k° - Ko sin® )% y + lKox sin € N elko cos STy + ik, sin GTx

where koa satisfies

} k
& 2 _ .2 sin 8 o
Mk © + (I-L)ko =K® , and ——p- BT _—Ko (5.40)

Clearly when 9 =0, sin € = 0 , and since ko is real, there will
always exist an undamped transmitted wave. (Assuming L <1 .) But if

for particular values of M and L , Ko > ko then there will exist a

2

critical value of 0 , at which ko2 = Ko sin°® and above which

1
(koa - Koa sin® 8)2 is pure imaginary, thus producing an exponentially

damped transmitted wave. This value of @ s given by acrit = sin-l(ko/Ko).
An incident wave approaching the ice at an incident angle greater than
ecrit will be totally reflected by the ice as shown in Fig. 3.

On the other hand, if k > K then {k® - K¥ sin® 8) is always
o o 0 o

positive, so that waves approaching at any angle will penetrate the ice.
In this case the transmitted wave is bent towards the normal so that the
ice may be regarded as being ''denser' than the water. When Ko = k0 ,
which, from Eg. (5.40), occurs when MKO4 = L, the transmitted wave pro=~
ceeds at the same angle as the incident wave. The wavelength at which

this occurs is denoted by 24 and hence any wave satisfying X > A

crit
penetrates the Ice regardless of the incidence angle.

crit
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6. DISCUSSION OF RESULTS

{a) Description of Procedure

{n obtaining the numerical results, the following values, taken from

Robin ,7 were used

Young's modulus for ice E = 5x10*° dyn/cm®

Poissen®s ratio for ice v = 0.3
Density of ice p = 0.92 gm/cn?
Density of sea-water p = 1.025 gm/cn?
Now
fi .
K =%, so that L = — hH (E)2 =}52—Hh
o P A by
and
En®
H=_2— = L 54 x lﬂsha
12(1-v°)pg

Rob?n7 has observed ice thicknesses of about 1.5 metres so thar values of
h
H

157 from 0 to 600, and various wavelengths of the incident wave, up to

0.75, 1.5, 3.0 metres were considered together with water depths of

10, 26 metres. The incidence angle © was allowed to vary in steps of

700 metres, were considered.

In each of these cases, the Eqs. (5.26), (5.27), (5.28), and (5.29)
with coefficients determined from £qs. (5.22), (5.23), and (5.24) were

solved and values were obtained for 7, #, and Z#.

In addition, the critical angle above which an incident wave

£}

crit

is completely reflected and the critical wavelength, A . above which
crit

an incident wave at any angle penetrates the ice, were computed in each

case.
As a check on the numerical work, the expression

L+ 4y g2
KD cas GT(I L 3Mk0 ka2

k cos ©
(o]

+ B2 _
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was evaluated. This should, of course, from Eq. (5.39) be identically
zero. The fact that this expression was, in all cases, negligibly small
provided a check on the numerical accuracy as well as a verification of
the shallow-water approximation since the relation between T and X
was derived by taking the limit for small H of the corresponding result
based on the exact linear theory. Presumably this same relation could be
derived directly from the analytic solution of the equations determining
A0 and R .

The results are shown in Figs. 5 through 15.

(b) The Critical Angle

In Fig. 5, the critical incident angle is shown as a function of
incident wavelength. The critical angle determines whether or naot a given
incident wave at a given incident angle is able to penetrate the ice (see
Figs. 2 and 3). Thus a wave approaching the ice-field at an angle @
greater than the critical angle (as determined from Fig. 5) is completely
reflected by the ice field. |If the incident angle is less than ecrit
then penetration of the ice field occurs and an undamped transmitted wave
travels through the ice field. Incident wavelengths greater than Acrit

corresponding to will always penetrate the ice, regardless of

n
8 =2

crit 2
the incident angle (see Fig. i).

(c) Reflection and Transmission Coefficients

Figures 6 to 10 show the varistion of A and 7 with the incident
wavelength * for ice thicknesses of 0.75, 1.5, and 3.0 metres, incident
angles ranging from 00 to 60° in steps of 150, and water depths of 10 and

20 metres.

In Fig. 6 the curves for 7 have been extrapolated so as to pass
through the origin, This is not strictly accurate since at A =0, L
is infinite, and it has been assumed that L < 1 . There dees in fact
exist a cut-off wavelength {unrelated to the incident angle) which eccurs
. . 4(L-1)°
whenever Eq. (5.21) fails to have a real root. This occurs when 27MK 3 >
and then all possible solutions in the ice-field decay exponentially ©

with distance, This restriction is of little physical significance since,
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for example, with h = 1.5 metres, H = 10 metres, no propagation is possible
for A <107 cms, approximately. In other words, this mathematical phenom-

enon only occurs at wavelengths too small to be physically significant.

Figures 6 to 10 illustrate the importance of ice thickness in deter-
mining reflection and transmission. Thus, for instance, from Fig. 6,
doubling the ice thickness from 1.5 to 3 metres causes a drop of over 25%
in the wave amplitude of the transmitted wave corresponding tc an incident
wave length of 250 metres. Since the wave energy is proportional to the
square of the wave amplitude, this means almost a 50% reduction in energy

caused by doubling the ice thickness.

In contrast, the water depth has Jittle effect on the reflection and

transmission coefficients except for the smailer wavelengths,

As would be expected, the ability of the ice to reflect the incident
wave is reduced as the incident wavelength increases, and for A > 500 metres,
the transmitted wave height is at least 95% of the incident wave height.

In all cases, the amount of reflection was very small except for the lower
wavzlengths. This agrees with the conclusions of Stoker,6 who considered

the two-dimensional preblem (€ = 0%.

Figures 6 to 10 furthermore indicate the effect of the angle of
incidence upon the reflection and transmission coefficients. For a fixed
wave length there appears to be a gradual increase in transmission with
increasing incident angle. For z given incident angle 7 decreases until
the cut-off wavelength is reached, at which 7 drops to zero and complete
reflection occurs. For larger incident angle a distortion of the trans-
mission curves takes place so that, for example, when © = 600, the trans-
mission curve for ice of 3 metres thickness has a minimum at a wavelength

of about 320 metres,

(d) Pressure Amplitude on the Bottom Under the lce

Figures 11 to 15 show the variation in non-dimensional pressure
fluctuations on the bottom under the ice normalized with respect to the
pressure on the bottom in the absence of ice, in terms of the incident

wavelength A, ice thickness h , water depth H , and incident angle 9
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In all cases the pressure ampiitude &ﬂ tends to unity as i in-
creases, which is to be expected. For € = UO, the pressure is generally
lower than the corresponding pressure amplitude on the bottom in the ab-
sence of ice, the pressure drop being greater for greater ice thickness,
For € = ISO, considerable changes in the pressure curves take place and
for the lower incident wavelengths 4P is actually greater than unity for
an ice thickness of 3 metres. This trend increases for larger values of
© so that for © = 60° the pressure jumps to over 1.5 the free surface
bottom pressure in the most extreme cases. As in the case of the trans-
mission coefficients, for each non-zero angle there is a cut-off wavelength

corresponding to ec at which the pressure drops abruptly to zero,

rit
indicating complete reflection of the incident wave,

(e) Comparison of Results With Ubservation

Robin7 has concluded that no effective transmission of wave energy
occurs for wavelenoths less than 200 metres in fields of large floes,
whereas major energy changes occurred in those waves having a period of

16 seconds, or wavelengths of 40O metres,

It is difficult to compare observations in deep water with a theory
based on the shallow water approximation. Thus Figs. 6 to 10 indicate
that energy transmission through the ice occurs at much lower wavelengths
than cu_erved by Robin.7 For instance, when A = 100 metres, h = 3.0m,

# = 0.3 indicating that over 90% of the incident energy has been trans-
mitted into the ice. This discrepancy is aimost certainly due to using
the shallow-water approximation. |If the numerical difficulties involved
in the solution based on the full linearized theory could be surmounted,
it is felt that a much closer comparison of theory and observation would

result.,

The experimental counterpart of this wave-ice investigation is re-

ported in Ref. 15,
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B. MODEL IIi. AN ICE-FIELD HAVING SURFACE TENSICON

1. FORMULATION AND SOLUT ION

In this model it is assumed that each element of the ice sheet is
subjected to a force arising from a surface tension force in the sheet.

Then it may be shown that

P=P, =" TSVE§ + pihgtt (6.1)

where TS = surface tensicon force.

The theory praceeds exactly as for Model Il except that the free

surface condition satisfied by V¥ becomes
2 y
Kq,Jﬁ)_aL_s(_a.__k-?)_‘fi’ z=H,0<y<w (6.2)
oz By® Sz

where § = Tslpg .
The characteristic equation is

3

Kcos bH+b ’I-L-Sb 2& sin b H=0 (6.3)
n n n n

which has an infinite sequence of real roots ibn(n = 1,2, ...) and two

pure imaginary roots iibo , for K,853>0, L<1i . Thus propagation always
occurs in the ice, if Iba, > k . Also, complete reflection of a plane
incident wave will always occur for some angle of incidence whenever

L <3%a?® .
Q

The transform of condition (5.2) is obtained by integrating by parts;

>

thus

RY, =¥ 1(1-L + $v°) + S(a,-Taa,) (xe 0.} (6.5)
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with the same notation as before. Similarly, for y <0

KY = Y_' (Q’ € D_) (6-5)

Following the same procedure as in Model 11, we arrive at the equation

K, @)K, (b4

K, (@) %(syz-m; -5 (aa-ial:lz il

I . K (@)K (-bl)
= -K_(a)( 3 (svy -L)Y_-S(aa-adal)% =iA ——d:gé——- = J{or)

(wed)  (6.6)

where

KeoshyH-v(1-L+sv®)sinhvH  K_ (o)
KcoshyH-ysinhyH = K_la)

and K, {o) is regular and non-zero in D, ., respectively.

The left-hand side cf (€.6) is regular everywhere in D, while the right-
hand side is regular everywhere in DP_ . The two sides are equal in the
strip D . This defines a2 function J(¥) regular in the whole ¢-plane.

't may be shown that

K+(a) 0(x) el = §in D

+

o(cv") lel =@ in D

K_(@)

Furthermore Y ' = o(1), lo] == in D, , as in Model 11,

But the left-hand side of (6.6) is just

K({) - XK (-b")
K, (@) {K'f+ - Y+|} il a+ ;o' 1= Na) (6.7)
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and s J(o) = ofe) as |e| =« in D, .

Similarly from the right-hand side of (6.6)
Je) =ole) ,as [e] == in D

Thus from an extension of Liouville's theorem

J{@) = €, a constant

We find from Eq. (6.6), that

- T - i
C - iAK (- b_') I

¥(o,H) = . -
@+ b ! (K - ytanhyr)K_ (e)

and so

= T coshyz _-iaty
v(y,2) EF‘L Y(ﬂ.ﬂ)m e " Tdy

where the path of integration is in D .

We see that the solution depends upon a constant C . An additional

condition is required to determine C .

The required condition is obtained by applying Green's theorem to
the function @(y,z) and its complex conjugate @ in the rectangle formed
by the lines z=0, z=H, y== Y, - Note, by analogy with Model 11,
that Ply,z) satisfies

@%2y° + 3°/8°)8(y.2) = 0 (6.8)
Y -
Kﬂ‘};‘ s 25H, ~a< y <0 (6.9)
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. ag  _ @° 2g
KB (1-L)-55-s(§;3-k2)a;,z=|+,o<y<n (6.10)
2
o h T
where K=£,L= I ,§===2
g rg pg
ibéy -k
Bly,z) =Te coshb z + ole™™), 0 zsH, y>0 (6.11)
s a1 _ial
Bly.z) =1 elaoycoshaoz + R e Iaoycoshaoz + O(eky) (6.12)
0=z=H,y< 0
where
1
| = (a2_13° t e (b2 _p® E2
al = (aj =k , b= (b’ -k
and

K cosha H = a sinha H
[} C o)

K coshb H = b [1-L4+Sb *) sinhb H
(o] Q [e] (o]

The method is identical to that used in Model i to determine the
relation between # and 7 . |In addition, it provides us with the

required conditions for the potential at infinity to be unique.

Green's theorem reduces to

tm | ﬂg%ds (6.13)
c

where the line integral is taken over the boundary of the rectangle. The
contributions fromz =0, and fromz =H , - ® <y <0 wvanish, and the

contribution fromz =H, 0 <y <« is
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- Y -
o o .2
of - -5 ) 2, o8 34
m[ Fg-dy=Imn={ (-a—g'- Y&, (50 5oy Y
c o y
-5 a8y T
K |3y ‘9z z=H Oz z=H =0+
-Sb ®sinh®b _Hb' 2 -
= o] o Q +§ lm(a ﬂ aﬂ) 'Tla
K K Eyaz 3z’ z=H
y=0+
The contributions to Eq. (6.13) from the boundaries y = * y

are
o

al - 2 2
o_ (2a f+sinh2eoH) (|T] 2[RI )
- 0 4 l I
o]
and

-bl, (2b F+sinhzb _H) |T|?
bO

, respectively
Thus combining all the terms, and using the relation

s Ksinh2b H
sinh boH E—_—
z
2b_ (1-L#sb %)
we obtain

bl
|T|2 2

25h ®
5 [2b°H+5|nh2boH(l+

o s
o )] +u§ (2L 28,
I-L+sbo

9yoz 9z’ z=H
y=0+
a' (2a_+sinh2a H) (|If -}RFP) (6. 14)
== © °
a
°
Now from Eq. (6.14), if |I|® = 0, so that no energy is being
supplied to the system, R=T =0

if and only if
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6 B8 _
'm(sysz 'ti—z-)z=H =0

y=0+

(6.15)

This condition must therefore be satisfied to ensure thai no energy is

being supplied to the system other than by the incident wave.

following relation may be derived between the reflection coefficient

PR

G

and the transmission coefficient

2_. .2
q’z _ bo sinh boH ITi2
2 . E-4 2
2, sinh aGH II‘

pT? +%2 - |

where

2 ' 2 . .
ao bO [(]-L+Sbo )ZbOH/SlnthOH + (]_L+3$b° )

D:—-—

2 .
b * a! [ZaoH/sthaOH + ]]

o o

When K is small, this reduces to

K2 Kkt
Dz—
k 2K!
0o O

in the notation of the shallow-water approximation used in Model |1,

The condition (6.15} may be satisfied in more than one way and the

74

o (i-L+25k;)

Then the

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)



R-1313

physical unreality of the modei does not provide an obvious choice. How=-

ever, the tension existing in the ice sheet, z = H, y > 0 suggests there

must be a restraining force at the edge of the sheet y = 0+. For instance,

if the ice is fixed at that point in some way such that the elevation is

zero, then, (%g) 4 =0 and condition (6.15) is satisfied. This condition
z=

y=0+

is sufficient to determine the constant € so that the solution is uniquely

determined.

This work provides an extension of the praoblem considered by Keller
and Goldstein5 who utilized the shallow-water approximation. The authors
apply a different third condition at the edge of the ice-field in order
to fuily determine the splution. ihis condition which is essentially the
continuity of vertical velocity at the Jeading edge, is not Sufficfent to
ensure that no energy is fed into the system other than from the incident
wave, and also, the authors do not discuss the instability of the stretched

membrane at the edge =z = H, y = 0+,
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APPENDIX A

It is required to find the position of the roots of the equation

A
- 4 = < > -
Kcosb H + bn {1 L+Mb Is sinb H 0, L 1, M, K 0 (A-1)

K

, 1t may be shown that
- LHMb%
L bn}

By sketching the curves tanb H and -
T
n

. . e + .
there js an infinite sequence of real zeros -bn(n =1,2,...) such that

la | <
’in Ibn+||, and furthermore

e

1
by ~H t o¢ nS) as n == {A-2)

K

The intersection of the curves tanh an and E;TT:I:ﬁgij_ indicate there

. . +.
are also two pure imagimary roots -1bo-

The number and position of the complex roots of (A-1) are deter-

mined by considering the equivalent equation

A+ z(14+Bz4*)tanz =0 (A-3)
for complex z(= x+ iy)-

Now

-0 as | z] - =

z(1+Bz*)

whereas

77



R-1313

ha
Z

tt ‘ sirfx + sinh®y 0
anz j = I ——
cos®x + sinh?y

provided x —- nmr and y — 0, simultaneously.

Equation (A-3) may be split into real and imaginary parts and one

form of the resulting equations is

5(do® - ¥)(dx® = ¥?) sinh2y _ _ sin2x (a-L)
(e - ¥) (e - V) 2y 2x
A’Si"hzy + sin2x) - 2B(x* - y*) (cosh2y - cos2x) (A-5)
~ 2y 2x Y :
where
dop =172 7; \J20 - 5/

€ .2 =5 : ‘JZO - 1/Bx*

Now as x — nr, n large, vy — 0, the left-hand side of (A-4} tends to 1,
while the right-hand side tends to zero. Hence, there exists no solution
to (A-3) for x > X, for some X, = xo(A,B)- Also, it is clear from (A-5)
that x > y for a solution to exist. Now from (&-3), if z, is 3 solution
with o < arg z <% , then "2, ;o and -Eo are also solutions- There are
thus a finite number of solutions of (A-2) occurring in pairs within the
region R bounded by the lines y = -"x, x =nv , for n large enough.

{See sketch on the following page).
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—( %

x=n1r
The number of roots lying in R may be determined by the method of the
argument. Thus, if

f{z) = A+ z(1+8z%) tanz

2

<1
o

A arg f(z) = (no. of zeros) - (no. of poles)

where A& arg f{z) means the change in the argument of f(z) as z traverses

the boundary of R. It may be shown that '2!; A& arg f(z) = 2 and since there

R, then there must also be two complex
zeros. Thus, in the entire plane there are four complex zeros of f(z),
such that x > y.

are n real zeros and n poles in

Thus, Eq, (A-1) has complex roots i’co . i‘Eo where co =X+ iu
and >y >0.

in a simiiar manner, it may be shown that the equation
K coss H + ina H=20 A=
“n 3,5ine, (A-6)

has an infinite sequence of real zeros an(n = 1{,2,...) such that

]anl <la [, and furthermore

n+1
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s ~ M

2 HrO) asn - e (a-7)

There are also two pure imaginary roots tiao. It may be shown that there

are no complex roots by considering the equation
A + ztanz = 0 for compiex 2z = x+iy {(A-8)

When (A-8) is split into real and imaginary parts, it is found that one of

the resulting equations may be written

sinh2y  sin2x

2y * 2w a (A-9)
inh2 .
No sinh2y 1 whereas sinZ2x < 1
2y 2%

so that (A-9) has ro solution for x, y # O.
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APPENDIX B

It is required to determine functions Ki(cf) such that

£ (v
T - GO (M)
o]

and Ki(”) is regular and non-zero in D

=

Consider the function
fi () = KcoshyH - y(i-L+Mv‘)sinhyH

This has zeros vy = b, ¥ = ib (n = i.2,...) and v = =ic_, ﬁiEo,
Re ¢ > 0. Thus, since ¥ =n? + K. » = 2b', 2ib', =ic’, =ic' , where
© o n o o

. iy
Re ¢! > k since 0<argc < T .
© g% 4

Since f.‘ (#) Te an entire function (a function whose only singular-
ities are poles), it may be written as an infinite product. (Noble”, p-15)

Thus

fi(v) = k(1 -biz)(l +Ciz)(1 +7.:V—':-) TT « +;’—’Z~) (0= 1,2,...)
0 o [o] n=] n

where v =of + I& .

In a similar manner, the function fo(nf] = KcoshyH - ksinhyH may

e written in the form

F0) = k(I —alz—)f_:][ @52

o]
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gnce the singularities of fo(cv), f1 () are revealed in this manner, it

is possible to define K:I:(a) in the following way.

Let
1 L © ’(H-k?b 2)%_12
K+(d) = (]+i—f—52—?ll(|+%) _é_ﬂ’ T_" n lbn'
o [+] o o n=1 3(]_”(2/6“2)2 _ ;_:E
| - L2HE) P
ao2 © ;(H?-) +
K_(a) = . — n n
- af+IE K E iy ﬂ K Ted H K2 3 ey
3]- b ° ¥2(1+ =) +—'—% (1+ =z} 'F?:—% {1+ Fe.) +7
[} 4] co I co “0) n=l n n
Then

K, (@) _ KcoshyH - v ({1-L+My*)sinhvH
K (@)

KcoshyH - wysinhvH

and K*(rv) is regular and non-zero in D, , respectively.

+
It is noteworthy that

ol 1<
aoz K+(-6c',)
K (@K (-) = ——2"— and that | ——2= o
;I_ 10) % K, (a))
(s}

The behavior of Ki(ﬂ) as lvl = = in D:}; may be determined by considering

the behavior of the infinite products zs lol = = . Now it may be shown that

_ o 1 -
an— H +ﬂ(n) as n -]
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whereas

Thus

1

)
= B\F g 3
&"’ ) - b ‘ o a e+ (B2 + 1)
— = &) _
: lo‘i n=l n <:/+i(a!2_l + KT
n

n
k2 i
;(H =) -0
n=1 n n=1
Now
%n 1 = 2,
._3: =1+ 0(‘;_13) so that [ (b—) = constant < o
n=1 f
Also J
3
- ~+T(bi + k2)2 . {
T R R ™}
n=i c‘+i(ai + ) =i n
where

Clearly fn(rv) - 0 as lal = =, veD,

and | f () 1« LoOst
n ne
so that
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[~}
(==

1im TT O+ () = W lim (1+f (") =1

Hence the infinite products in the expression for K+(6') are 0(1) as
jel= =, D - A similar result holds for the infinite products appearing
in K_(v). Thus

K+(ar) 0(c®) as Inl == in D

+

O ) as Ivl == in D

K_()
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